Toward Efficient and Accurate Order-Independent Transparency

Ethan Kerzner*
University of Iowa

Chris Wyman
University of Iowa

Abstract

Correctly rendering multi-layered transparent geometry requires
accumulating contributions from multiple fragments per pixel. Dy-
namic A-buffers (e.g., Yang et al’s [2010] per-pixel linked lists)
achieve this by storing and sorting fragments on-the-fly. We intro-
duce two improvements to recent GPU-based interactive A-buffer
techniques. First, our redesigned algorithm uses fewer costly global
atomic operations to construct linked lists. Second, we decou-
ple visibility and shading to reduce memory demands of multi-
fragment rendering.

Keywords: order independent transparency, real-time rendering

1 Introduction and Previous Work

Multi-fragment rendering has three per-pixel steps: identifying
primitive visibility, shading, and accumulating final pixel color.
Yang et al’s [2010] per-pixel linked lists (PPLL) determine visi-
bility in a single rendering pass, storing all fragments in a global
buffer with a global atomic counter controlling write access. In
contrast, the S-buffer [Vasilakis and Fudos 2012] uses two passes.
The first obtains per-pixel fragment counts and allocates contigu-
ous memory for each pixel’s fragments. Memory requirements for
both algorithms scale linearly with fragment count, but the S-buffer
performs faster than PPLLs as it reduces global atomic contention
during list creation and improves spatial coherence of fragment data
when accumulating pixel colors.

2 Reduced Contention Per-Pixel Linked Lists

PPLLs use a global atomic counter to dynamically allocate a linked
list node for each fragment. We propose reducing global contention
by allocating memory per-primitive rather than per-fragment. Our
primitive-allocated linked lists (PALLs) use a conservative bound
of a primitive’s fragment count to allocate memory, reducing frag-
ment shader atomic contention. Fragment shaders then store visi-
bility data inside this region using a linked list structure.

We implemented PALL in OpenGL. The reduced contention in
PALL increases performance: when rendering 1.4 * 10° fragments,
PALL uses 4.95 ms per frame while PPLL uses 5.36 ms. Our sup-
plementary material includes performance metrics that show PALL
scales more efficiently than PPLL as total fragment count increases.
However, PALL’s conservative primitive bound increases memory
usage.

3 The Compact A-Buffer

Existing interactive A-buffers store shading and visibility inside
fragment lists. This saves per-primitive shading data repeatedly in
multiple pixels. Decoupling storage of primitive and fragment data
in our new compact A-buffer significantly reduces memory over-
head. This approach resembles the decoupling proposed by Liktor
and Dachsbacher’s [2012] compact G-buffer.

*e-mail:ethan-kerzner @uiowa.edu

US Army Research Laboratory

Christiaan Gribble
SURVICE Engineering

Lee Butler

Our compact A-buffer applies to either linked lists or the S-buffer.
In both cases, rather than replicate per-primitive data in every frag-
ment, we store a primitive ID with each fragment and create a single
buffer of primitive data. When accumulating pixel color, we access
this primitive data to shade each fragment. Although this adds a
layer of indirection to shading computations, decoupling provides
significant memory savings with only minor performance impact.
Memory consumption still scales linearly with fragment count, but
with a strictly lower constant factor as shown in Figure 1.

Memory Footprints of Dynamic A-Buffers
6x 107

u S-buffer
5x107 u Compact S—buffer
4x 107
3x107

2x107

Memory (bytes)

1x107

Wi

0
100000 200000 300000 400000 500000 600000
Fragment Count

Figure 1: Memory usage of regular and compact A-buffers, com-
puted at 1024% resolution with various fragment counts. When
primitive count exceeds fragment count, our compact A-buffer has
a larger memory footprint. However, our compact A-buffer scales
more efficiently as average primitive size increases.

4 Conclusion

We introduced two GPU-based A-buffer optimizations. The
primitive-allocated linked lists reduces global fragment shader con-
tention while computing primitive visibility, resulting in faster per-
formance but increased memory usage. The compact A-buffer de-
couples storage of visibility and shading data, reducing memory
demands at a small performance cost. Metrics and applications of
these techniques are included in our supplementary material.

References

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. 143-150.

VASILAKIS, A., AND FuDpoS, I. 2012. S-buffer: Sparsity-aware
multi-fragment rendering. Eurographics Symposium on Render-
ing.

YANG, J., HENSLEY, J., GRUN, H., AND THIBIEROZ, N. 2010.

Real-time concurrent linked list construction on the gpu. Com-
puter Graphics Forum 29, 4, 1297-1304.



