

Agenda

- Introduction
 - Radio frequency simulation
 - RFRT : radio frequency ray tracing

Agenda

- Introduction
 - Radio frequency simulation
 - RFRT : radio frequency ray tracing
- StingRay
 - Architecture & core components
 - Live demonstration

Agenda

- Introduction
 - Radio frequency simulation
 - RFRT : radio frequency ray tracing
- StingRay
 - Architecture & core components
 - Live demonstration
- Wrap-up

Radio frequency simulation

- Radio frequency (RF) propagation
 - Transmission of radio waves
 - Behavior affected by various phenomena
- Possible methodology
 - Empirical models, FEM, 2N-ray models, ...
 - Monte Carlo path tracing

RFRT – radio frequency ray tracing

- Ray representation
 - EM wave, same direction of travel
 - Direction perpendicular to wavefront
- Ray behavior
 - Graphics : reflection, refraction
 - RF simulation : +diffraction, +interference

RFRT – diffraction

without diffraction

with diffraction

scene object

- Wedge diffraction
- Diffraction edge proxy geometry

RFRT – interference

RFRT – validation

StingRay – combined RF sim/viz

- Loosely-coupled components
 - Simulation : Embree
 - Visualization : OpenGL, Embree, OSPRay, ...
 - GUI: Qt5
- Open source release
 - Fully interactive sim/viz environment
 - Cross-platform support
 - Coming winter 2014

StingRay – simulation engine

- Ray-based RF wave propagation
 - Dominant RF propagation phenomena
 - Full simulation : Monte Carlo path tracing
- C++ library with straightforward API
 - Asynchronous multithreaded ray logging
 - Embree : intersection engine

scene geometry

• Defines objects & materials in physical environment

scene geometry edge geometry

- Defines objects & materials in physical environment
- Captures & generates diffraction events

scene geometry edge geometry

ray logger

- Defines objects & materials in physical environment
- Captures & generates diffraction events
- Collects completed paths & RF propagation state

scene geometry edge geometry

ray logger simulation controller

- Defines objects & materials in physical environment
- Captures & generates diffraction events
- Collects completed paths & RF propagation state
- Governs execution & interfaces with client programs

StingRay – specular reflection

StingRay – wedge diffraction

StingRay – performance

StingRay – visualization pipeline

- Loosely-coupled visualization plug-ins
 - Producer/consumer API
 - Frame-oriented I/O
 - Extensible hierarchy of visual elements
- Interactive exploration of results
 - Online queries of underlying data
 - OpenGL, Embree, OSPRay, ...

StingRay – visualization capabilities

- Scene geometry
- Diffraction edges
- Ray glyphs
- Scalar volume data
 - Traditional volume rendering
 - Participating media

StingRay – examples

StingRay – examples

StingRay – examples

 RF simulation : critical to planning, analyzing, & optimizing communication networks

- RF simulation
- RF ray tracing: high performance alternative to traditional RF simulation methods

- RF simulation
- RF ray tracing
- StingRay + Intel hardware & software : enables a combined simulation/visualization approach

- RF simulation
- RF ray tracing
- StingRay + Intel hardware & software
 - Intel® Xeon® product family : HP compute for physics-based simulation
 - Embree: HP ray tracing for optical & non-optical rendering
 - OSPRay: HP visualization for understanding RF propagation

Acknowledgements

- Intel
 - Jim Jeffers, Ingo Wald, & PVE team
 - Nicole Grieve
- SURVICE
 - Mark Butkiewicz
 - Gideon Ludwig

Contact information

Address

Applied Technology Operation SURVICE Engineering Company 1362 Brass Mill Road, Suite 5 Belcamp, MD 21017

E-mail

christiaan.gribble@survice.com jeff.amstutz@survice.com

Web

http://www.survice.com/

